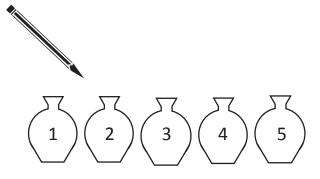
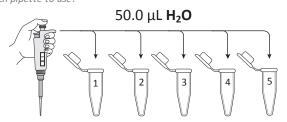

Lab 1 Flow Chart: Learning basic laboratory skills

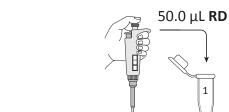
RD	Red dye solution
S1	Dye 1
S2	Dye 2
\$3	Dye 3
H ₂ O	Water
1X TAE	1X TAE buffer


Lab 1.1: Basic pipetting and serial dilution

1


• Pick up and inspect the micropipettes on your bench, identify the parts.

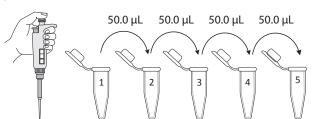
2



Label 5 microfuge tubes 1 through 5 using a marker.

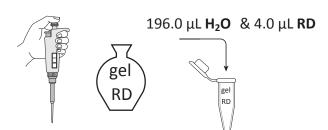
Which pipette to use?

Transfer 50 μL water (H₂O) into the 5 tubes.



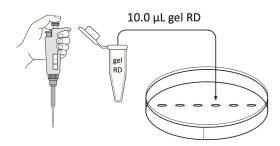
- Transfer 50 μL red dye (RD) into tube 1.
- Pipette up and down several times to mix.

Avoid contamination:

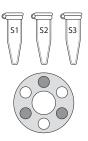

Change a new tip.

5 & 6

- Use a new tip, transfer 50 μL solution from tube 1 into tube 2 and mix well.
- · Repeat the process for tube 2 through 5.
- Observe the decreasing intensity of colour of redness from tube 1 through 5.


7

- Label a new microfuge tube gel RD.
- Prepare 50-fold red dye solution (gel RD) by adding 196 μL water (H₂O), then 4 μL red dye (RD) to the tube.


Lab 1.2: Dye separation by gel electrophoresis

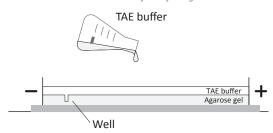
8

- Pour 1x TAE buffer (1x TAE) into the practice plate.
- Practice your technique by pipetting 10 μL 50-fold red dye solution (gel RD) to each well.

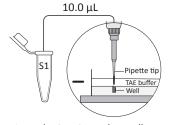
9

· Centrifuge the \$1, \$2, and \$3 tubes.

Balance the weight:


 Arrange the tubes in a triangular pattern to attain uniform weight distribution.

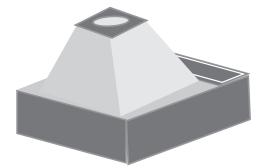
10


- Draw the location of the wells in your notebook
- · Record which solution you will place in each well.

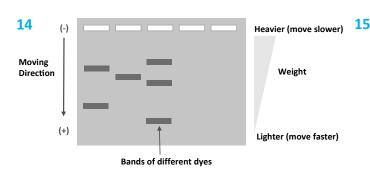
Just cover the surface of the gel

- Pour 1x TAE buffer (1x TAE) into the gel tank.
- Put the gel tank into the gel electrophoresis system.

12 Make sure the wells are near the negative electrode.


- Add 10 μ L **S1** solution into the well.
- Repeat the step for S2 and S3.

Avoid contamination:

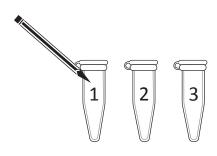

• Change a new tip every time.

Avoid getting air into the buffer:

 Press to 1st stop ONLY and hold the plunger while removing the pipette tip out of the buffer. 13

- Place the photo hood on the gel electrophoresis system
- Turn on power supply and press the on/off button.
- Check if bubbles form in the buffer at the (-) electrode.

- After 10 minutes, or when you can distinguish all three dyes, turn off the switch.
- Remove the photo hood from the electrophoresis system and observe the dyes in the gel.


• Draw the relative location of the bands and their colors in each of the lanes containing your samples.

Lab 2 Flow Chart: Identifying a recombinant plasmid pARA-R

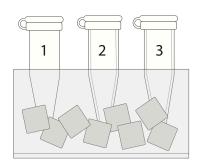
MM	PCR master mix
A-rfp	Plasmid A with <i>rfp</i> gene (pARA-R)
Α	Plasmid A (pARA)
LD	Loading dye
М	DNA ladder
H ₂ O	Water
1x TAE	1X TAE buffer

Lab 2.1: Checking plasmid with PCR

Ink can come off the top of the tube in the thermocycler (PCR machine).

Label three PCR tubes 1, 2 and 3 with your group number.

2

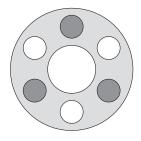

Table 2.1: Addition of reagents to the PCR tubes

	1	2	3
(a) PCR master mix (MM)	23.0 μL	23.0 μL	23.0 μL
(b) Plasmid A with rfp gene (A-rfp)	2.0 μL		
(c) Plasmid A (A)		2.0 μL	
(d) Water (H₂O)			2.0 μL
Total volume	25.0 μL	25.0 μL	25.0 μL

- Add reagents according to the order in Table 2.1.
- Gently pipette up and down several times to mix.

Change a new tip every time after adding a solution.

3



Return all PCR tubes to the ice immediately.

Avoid warming reagents:

- Tubes must be kept cold in ice.
- Hold the tube by the upper rim.

6

Gently tap the bottoms of the PCR tubes or centrifuge the tubes if there are bubbles.

5

- Transfer your PCR tubes from the ice into the thermocycler.

Table 2.2: PCR thermocycler program for ABE

		Temperature (°C)	Time (sec)
Initial hold		4	Indefinite
Initial dena	Initial denaturation		270
	Denaturation	95	30
30	Annealing	53	30
cycles	Extension	68	60
Final extension		68	300

Take your ice cup with PCR tubes to your teacher. • The thermocycler has been pre-programmed for the reaction.

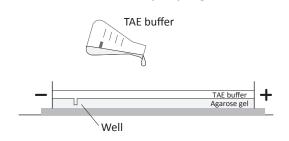
Lab 2.2: Confirmation by gel electrophoresis

2.0 μL **LD** 2

- Add 2 µL of loading dye (LD) to each of the three PCR tubes and to the tubes with DNA ladder (M).
- Gently pipette up and down several times to mix.

Change a new tip every time after adding a solution.

Draw the location of the wells in your notebook.


Make sure the wells are near the negative electrode.

Pipette tip

10.0 μL

9

Just cover the surface of the gel

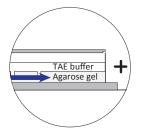
- Add 10 µL of the DNA ladder (M) and each samples (1,2,3) into designated wells.
- Pour 1x TAE buffer (1x TAE) into gel tank.
- Put the gel tank into the gel electrophoresis system.

Change a new tip every time.

Avoid getting air into the buffer:

Press to 1St stop ONLY and hold the plunger while removing the pipette tip out of the buffer.

11

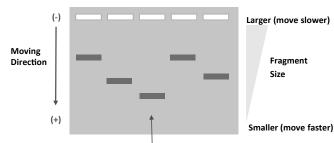


Place the photo hood on the gel electrophoresis system

- Turn on power supply and press the on/off button.
- Check if bubbles form in the buffer at the (-) electrode.

12

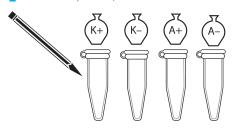
10



After two or three minutes, see if the bands are moving towards the positive electrode.

13

- After 20 minutes, observe the bands.
- Record the location of bands in your notebook



Bands shows different size of DNA fragment

Lab 3.1 Flow Chart: Cutting the two plasmid (Restriction Digestion)

2.5x RB	2.5x Restriction Buffer
K	Plasmid K (pKAN-R)
Α	Plasmid A (pARA)
RE	Restriction Enzymes (BamHI & HindIII)
H ₂ O	Water

1 '+' means present; '-' means absent

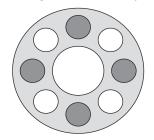
Label 4 new tubes as K+, K-, A+, and
 A- with class and group no. .

2 🗑

Add reagents according to the order in Table 3.1.

Table 3.1: Addition of reagents to the K+, K-, A+, and A- tubes

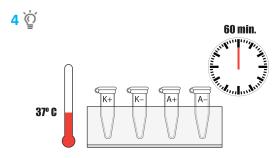
	K+	K-	A+	A-
(a) Restriction buffer (2.5x RB)	4.0 μL	4.0 μL	4.0 μL	4.0 μL
(b) Plasmid K (K)	4.0 μL	4.0 μL		
(c) Plasmid A (A)			4.0 μL	4.0 μL
(d) Restriction Enzymes (RE) and mix	2.0 μL		2.0 μL	
(e) Water (H ₂ O) and mix		2.0 μL		2.0 μL
Total Volume	10 μL	10 μL	10 μL	10 μL


Avoid contamination:

Change a new tip every time after adding a solution.

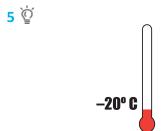
Mix well:

• Gently pipette up and down three times.


3 To pool the reagents at the bottom of each tube

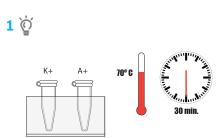
 Spin the four microfuge tubes (K+, A+, K-, and A-) for few seconds.

Balance the weight:


Distribute the tubes evenly

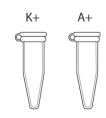
• Incubate 4 tubes in 37°C water bath for 60 mins.

Avoid non-specific cutting:


• Incubate not longer than 2 hours

 After the incubation, store 4 tubes in the -20°C freezer for use in Lab 3.2.

Lab 3.2 Flow Chart: Putting the rfp gene into the plasmid (Ligation)


K+	Digested plasmid K (pKAN-R)
A+	Digested plasmid A (pARA)
5x LigB	5x ligation buffer
LIG	DNA ligase
H ₂ O	Water

• Label **LIG** with class and group no. .

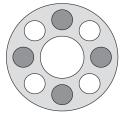
3

 After 30 minutes, remove K+ and A+ from the water bath.

Add reagents directly into LIG according to the order in Table 3.2.

Table 3.2: Addition of reagents LIG tubes

	LIG (with 2.0 μL of DNA Ligase)
(a) Digested plasmid A (A+)	4.0 μL
(b) Digested plasmid K (K+)	4.0 μL
(c) 5x ligation buffer (5x LigB)	3.0 μL
(d) Water (H₂O) and mix	2.0 μL
Total Volume	15 μL

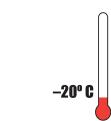

6

2

Avoid contamination:

- Change a new tip every time after adding a solution.
 Mix well:
- Gently pipette up and down three times.

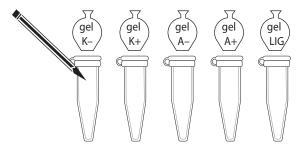
Pool the reagents at the bottom of each tube


Spin the LIG tube for a few seconds.

Balance the weight:

Distribute the tubes evenly

Incubate **LIG** tube at room temperature overnight.



 Store K+ and A+ tubes in the -20°C freezer for use in Lab 3.3.

Lab 3.3 Flow Chart: Confirmation by Gel Electrophoresis

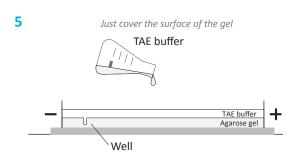
K-	Nondigested plasmid K (pKAN-R)
K+	Digested plasmid K (pKAN-R)
A-	Nondigested plasmid A (pARA)
A+	Digested plasmid A (pARA)
LIG	Ligated plasmid
LD	Loading dye
H ₂ O	Water
M	DNA ladder
1x TAE	1x TAE buffer

1 'gel' indicates gel electrophoresis samples

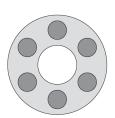
• Label five new microfuge tubes gel A-, gel A+, gel K-, gel K+ and gel LIG with class and group no. .

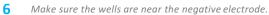
- Add reagents according to the order in **Table 3.3**.
- Pipette up and down several times to mix.

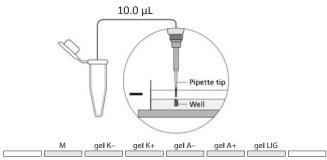
Table 3.3: Addition of reagents to the gel K–, gel K+, gel A–, gel A+, gel LIG and M tubes


	gel K–	gel K+	gel A–	gel A+	gel LIG	M (contain 8 μL DNA ladder)
(a) Water (H2O)	4.0 μL	4.0 μL	4.0 μL	4.0 μL	3.0 μL	
(b) Loading Dye (LD)	2.0 μL	2.0 μL				
(c) Nondigested plasmid K (K–) and mix	4.0 μL					
(d) Digested plasmid K (K+) and mix		4.0 μL				
(e) Nondigested plasmid A (A–) and mix			4.0 μL			
(f) Digested plasmid A (A+) and mix				4.0 μL		
(g) Ligated plasmid (LIG) and mix					5.0 μL	
Total volume	10 μL	10 μL				

<u>Avoid contamination:</u>

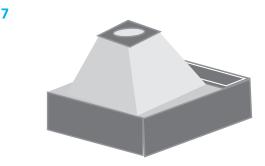

• Change a new tip every time after adding a solution.


• Return the **LIG** tube to your teacher to store in the -20°C freezer for use in *Lab 4*.

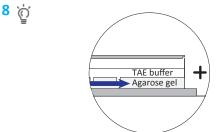


- Pour 1x TAE buffer (1x TAE) into gel tank.
- Put the gel tank into the gel electrophoresis system.

Spin the six tubes (gel A-, gel A+, gel K-, gel K+, gel LIG and M) for a few seconds.

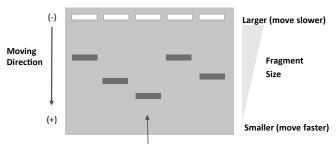

Add 10 μL of the M and five samples (gel A–, gel A+, gel K–, gel K+ and gel LIG) into the wells

Avoid contamination:


• Change a new tip every time.

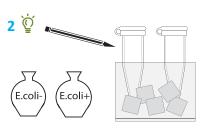
Avoid getting air into the buffer:

 Press to 1st stop ONLY and hold the plunger while removing the pipette tip out of the buffer.


- Place the photo hood on the gel electrophoresis system
- Turn on power supply and press the on/off button.
- Check if bubbles form in the buffer at the (-) electrode.

 After two or three minutes, see if the bands are moving towards the positive electrode.

- After 20 minutes, observe the bands.
- Record the location of bands in your notebook



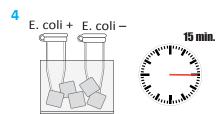
Bands shows different size of DNA fragment

Lab 4 Flowchart: Transforming Bacteria with Recombinant Plasmid

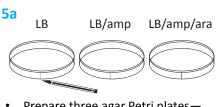
LIG/A-rfp	Ligated plasmid/ Plasmid A with rfp gene
LB	Luria Broth
E. coli	50 μL of chilled competent <i>E. coli</i> cells x 2
LB	Plate contains Luria Broth (LB)
LB/amp (one stripe)	Plate contains Luria Broth (LB) and ampicillin (amp)
LB/amp/ara (two stripes)	Plate contains Luria Broth (LB), ampicillin (amp) and sugar arabinose (ara)

1 💇 Use **ASEPTIC** techniques throughout the whole lab.

Label two tubes of **E. coli** cells with "-" and "+" and your group no. .

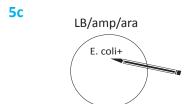

Avoid warming cells:

- Keep two tubes on ice.
- Do not hold the bottom of the tubes.


Part 1: Sample Preparation

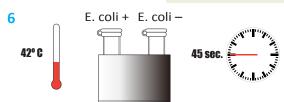
- Add 10 µL of LIG (or A-rfp) to "E. coli+".
- Gently flick the tube three times to mix.
- Return the tube immediately to ice.

Keep **E. coli**— and **E. coli**+ on ice for 15 mins.


- Prepare three agar Petri plates—
 LB, LB/amp, and LB/amp/ara.
- Label the bottom of each plate with class & group no. .

Avoid contamination:

keep the plates closed while labelling

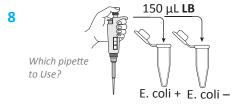

Write small on edge of the plate. LB LB/amp E. coli– E. coli+ E. coli– E. coli+

- Draw a line in the middle of LB and LB/amp plate.
- Label half of each plate "E. coli—" and the other half "E. coli+".

Label LB/amp/ara plate as "E. coli+".

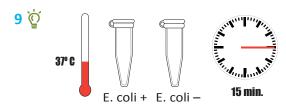
Part 2: Transformation (Heat Shock and Recovery)

After 15-min incubation on ice, incubate the **E. coli** tubes in 42°C water bath for exactly 45 sec.

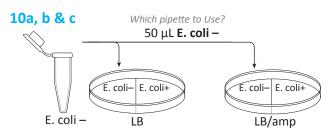

E. coli + E. coli -

Immediately place the tubes back on ice for 2 mins.

Avoid warming cells:


Carry tubes in the cup of ice to water bath.

- Add 150 μL of LB to the E. coli- and E. coli+ tubes
- · Gently flick it three times to mix.

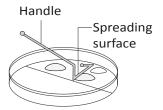

Avoid contamination:

change a new tip every time after adding a solution.

Incubate the **E. coli** tubes at room temperature (or 37°C) for 15 mins..

Part 3: Spread the Cells on Plates for Incubation

- Suspend E. coli— cells by gently pump the pipette two or three times.
- Add 50 µL of E. coli— cells to "E. coli—" on LB plate and LB/amp plate.

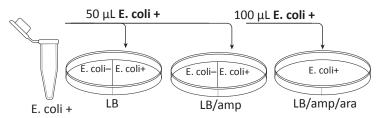

Avoid contamination:

- Change a new tip every time after adding a solution.
- Open lid just big enough to add the cells (like a clamshell)

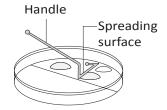
Avoid the cells slipping to another half of the plates:

• Add the cells slowly to the section

11a, b & c

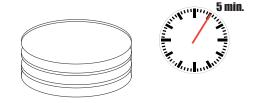


Use the same spreader to spread the **E. coli**— cells evenly across the entire **"E. coli—"** section on **LB** and **LB/amp** plate.


Avoid contamination:

- Hold the spreader by the handle.
- Do not allow the bent end to touch any surface.
- Open lid just big enough to add the cells (like a clamshell)

12



13

- Repeat step 10 for E.coli+.
- Add 50 μL **E. coli+** cells "E. coli+" on **LB** and **LB/amp** plates.
- Add 100 μL E. coli+ cells to the LB/amp/ara plate.
- Repeat step 11 for E.coli+.
- Spread the E. coli+ cells evenly across the entire "E. coli+" section on LB, LB/amp, and LB/amp/ara plates.

14

Leave all plates right side up for 5 mins.

- · Tape all three plates together
- Label the tape with class & group no.

16 🖞

17

Examine the plates and record the amount of growth on each half.

Incubate the plates at 37°C upside down for 24–36 hours.

Prevent condensation from dripping on gels:

Incubate the plate upside down